
The Pseudo Dual-Edge D-Flipflop
Ralf Hildebrandt
Dresden, Germany

Ralf-Hildebrandt@gmx.de

0 1 0 0 1 1 0

Fig. 1. FM0 encoding; initial state determines waveform

p r o c e s s (r e s e t , c l o c k)
begin
i f (r e s e t = ’1 ’) then

−− r e s e t
e l s i f r i s i n g e d g e (c l o c k) then

−− s y n c h r o n o u s b e h a v i o r
e l s i f f a l l i n g e d g e (c l o c k) then

−− s y n c h r o n o u s b e h a v i o r
end i f ;
end p r o c e s s ;

Listing 1. not synthesizable dual-edge behavior in VHDL

Abstract— Although only one edge of the clock should always
be used, sometimes it would be convenient to use both edges.
This paper1 describes the fully synthesizable pseudo dual-edge
D-flipflop.

I. INTRODUCTION

One important design rule is to use only one edge of the
clock signal. Although this is a good design practice in some
special cases it might be helpful to use both edges.

One example is low-power signal processing, where all
state machines should run at the symbol frequency to avoid
unnecessary switching. But the signal frequency might be
higher than the symbol frequency. FM0 encoding (fig. 1) is
an example. With FM0 encoding always the signal switches
at the begin of every symbol. Another signal switch is done
in the middle of the symbol, if zero has to be transmitted. If
a transmitter wants so send a FM0 encoded data stream and
runs only at the symbol frequency, the output signal has to be
switched with the rising edge of clock and additionally with
the falling edge, if zero is transmitted.

Another example for dual-edge behavior are clock dividers.
For odd divisors the divided clock signal has to be switched
at the falling edge of the fast clock, to get the same length for
the low and the high period.

II. THE PROBLEM

There are two problems if dual-edge behvaior is desired:

1This paper has not been published anywhere and contains free information.
You may use it and modify it at free will.

clk
d

Q

1
0

1
0

q

rn

d
clk

XOR

D

D

q

rn

Fig. 2. Pseudo Dual-Edge D-Flipflop (pde dff)

1) Most cell libraries do not provide a dual-edge flipflops.
2) In VHDL dual-edge behavior can be described as shown

in listing 1, but most synthesis tools do not support this.
Only few are capable of handling such a description.
Therefore we need another way to model dual-edge
behavior.

III. THE PSEUDO DUAL-EDGE D-FLIPFLOP

Although dual-edge behavior is not supported by VHDL,
synthesis and the cell libraries, a dual-edge flipflop can be
described as shown in fig. 2. Note that synthesis tools will
transform the multiplexers into XOR gates.

The pde dff consists of 2 cross-coupled flipflops, one trig-
gered by the rising and the other one triggered by the falling
edge of the clock signal c. The outputs of the flipflops are
connected via an XOR gate. Although not shown in fig. 2,
asynchronous set and reset are possible.

The synthesizable VHDL source code of the pde dff is
shown in listing 2. Both asynchronous set (sn) and reset (rn)
can be turned on or off using generic parameters.

Using both edges of the clock means doubling the clock
frequency. Propagation paths have to be half as long for dual-
edge logic compared to common single-edge logic.

Although the pde dff looks symmetric it has in general
asymmetric behavior in terms of the propagation time for the
rising and the falling edge of the data output q. It depends
on the data input d, the stored values in the two flipflops and
the propagation times of both the flipflops and the final XOR
gate. For the example of FM0 encoding (fig. 1) this means that
for a continous transmission of the symbol zero in general the
time of the output q being high is not equal to the time of
the output being low. Such an assymmetry is not uncommon
even for single-edge flipflops but for the pde dff it is slightly
bigger.

IV. SUMMARY

The advantage of the pde dff is the local use of both edges
of the clock, which means the use of the doubled frequency.
All other parts of the design can use the main clock.

The alternative is to double the main clock, use it for the
cases, where the pde dff could be used, and divide it by two for
all the other parts of the design. This results in an unnecessary
high main clock.

The pde dff should be used only for special cases. In most
cases a synchronous design running at the rising edge of the
main clock is the better choice.

l i b r a r y IEEE ;
use IEEE . STD LOGIC 1164 .ALL, IEEE . N u m e r i c s t d .ALL ;

e n t i t y p d e d f f i s
g e n e r i c (

i m p l r n : i n t e g e r : = 1 ; −− w i t h async r e s e t i f 1
i m p l s n : i n t e g e r :=1) ; −− w i t h async s e t i f 1

port (
rn : in s t d u l o g i c ; −− low−a c t i v e
sn : in s t d u l o g i c ; −− low−a c t i v e
d : in s t d u l o g i c ;
c : in s t d u l o g i c ;
q : out s t d u l o g i c) ;

end p d e d f f ;
−− pseudo dual−edge D− f l i p f l o p
−− r e s e t and s e t are low a c t i v e and can be
−− (de) a c t i v a t e d u s i n g t h e g e n e r i c p a r a m t e r s

a r c h i t e c t u r e b e h a v i o r of p d e d f f i s
s i g n a l f f r i s e , f f f a l l : s t d u l o g i c ;
begin

p r o c e s s (rn , sn , c)
begin
i f (i m p l r n =1 AND rn = ’0 ’) then

f f r i s e <= ’0 ’;
e l s i f (i m p l s n =1 AND sn = ’0 ’) then

f f r i s e <= ’1 ’;
e l s i f r i s i n g e d g e (c) then

i f (d = ’1 ’) then
f f r i s e <=NOT(f f f a l l) ;

e l s e f f r i s e <= f f f a l l ;
end i f ;

end i f ;
end p r o c e s s ;

p r o c e s s (rn , sn , c)
begin
i f (i m p l r n =1 AND rn = ’0 ’) then

f f f a l l <= ’0 ’;
e l s i f (i m p l s n =1 AND sn = ’0 ’) then

f f f a l l <= ’0 ’;
e l s i f f a l l i n g e d g e (c) then

i f (d = ’1 ’) then
f f f a l l <=NOT(f f r i s e) ;

e l s e f f f a l l <= f f r i s e ;
end i f ;

end i f ;
end p r o c e s s ;

q <= ’0 ’ when (i m p l r n =1 AND rn = ’0 ’) e l s e
’1 ’ when (i m p l s n =1 AND sn = ’0 ’) e l s e
f f r i s e XOR f f f a l l ;
−− rn and sn used t o s u p p r e s s s p i k e s

end b e h a v i o r ;

Listing 2. The Pseudo Dual-Edge D-FF in VHDL

